Алгоритмы маркетмейкера. Часть 2

Алгоритмы маркетмейкера. Часть 2


В прошлой части мы рассмотрели оптимальное управление inventory risk в маркетмейкерском алгоритме. Напомню, что формулы для нейтральной цены и оптимального спреда между лимитными ордерами были получены при допущении, что цена следует геометрическому броуновскому движению. Управление inventory risk для моделей цены, более приближенными к реальности, рассматривается, например, в статье Pietro Fodra & Mauricio Labadie «High-frequency market-making with inventory constraints and directional bets» . Однако, применить напрямую на практике алгоритмы из этих статей вряд ли получится, так как в них  не учитывается действие adverse selection risk. Поэтому в данной части рассмотрим работу JIANGMIN XU «Optimal Strategies of High Frequency Traders», в которой автор делает попытку учесть этот вид риска, конечно, наряду с inventory risk.



 Для этого необходимо получить предсказание направления движения цены в коротком промежутке времени ( мы говорим о высокочастотных алгоритмах, поэтому такой промежуток будет измеряться в секундах, или даже долях секунды). JIANGMIN XU предлагает учитывать зависимость цены от дисбаланса объемов в стакане, который равен  разности между логарифмами объема лучшей покупки и объема лучшей продажи F=log(Qbestbid)−log(Qbestask). Этот дисбаланс следует процессу Орнштейна-Уленбека с нулевым средним:


 $$dF_t=-\alpha_F F_t dt+\sigma_F dW_t$$


 где αF- константа, отражающая скорость колебаний вокруг среднего,


σF- постоянная, отражающая волатильность процесса,


dWt- случайный броуновский процесс.


Далее нам понадобится модель спреда St- разницы цен между лучшим аском и лучшим бидом- которая представляет собой марковский процесс с тремя состояниями -S={δ,2δ,3δ}, где δ- шаг цены. Матрицу вероятностей переходов обозначим ρ=(ρi,j) 1≤i,j≤3,  ρi,i=0.


В качестве модели прироста цены актива возьмем один из видов марковского процесса — pure-jump process :


dP_t=dJ_{1t}+dJ_{2t}


dJ1t- первая составляющая имеет интенсивность скачков цены λJ1, величину скачка δ/2 с вероятностью ψ1(Ft)и  величину скачка −δ/2 с вероятностью 1−ψ1(Ft),
dJ2t — вторая составляющая имеет интенсивность скачков λJ2, величину скачка δ  с вероятностью ψ2(Ft) и  величину скачка −δ  с вероятностью 1−ψ2(Ft) ,


где функция ψi имеет форму  


\psi_i(u)=\frac{1}{1+\exp(-\beta_i u)}},


для i =1,2.


Дисбаланс объемов Ft в стакане влияет на скачок цены в следующий момент времени таким образом: если Ft>0 цена с большей вероятностью будет расти и наоборот. Этот сигнал конечно не идеален, но позволяет предсказывать цену на коротком временном промежутке и будет полезен для формирования формулы оптимального управления рисками в рамках HFT стратегии.


Сформулируем основные стратегии для HFT алгоритма:


1. Котирование (make strategy). В рамках этой  стратегии алгоритм может располагать лимитные ордера на best bid или best ask, а если спред St>δ, то ордера могут располагаться на ценовых уровнях Pt−St/2+δ(Pt+St/2−δ), для увеличения вероятности взятия ордера с меньшими затратами, чем затраты при гарантированном исполнении маркет ордера. Эту модель представим в виде непрерывного процесса:


\theta^{mk}_t=\{\theta^{mk,b}_t,\theta^{mk,a}_t\}, t\geq0\theta^{mk,b}_t\in\{0,1\},\theta^{mk,a}_t\in\{0,1\}


b и a означают bid и ask соответственно. Таким образом  0 означает постановку ордера на лучшую цену покупки или продажи, а 1 означает постановку ордера на лучшую цену плюс/минус δ. Если спред минимальный — St=δ — то значение \theta^{mk}_tможет быть равно только 0.


2. Использование маркет ордеров (take strategy). Для получения мгновенного исполнения алгоритм может использовать маркет ордера. Маркет ордер, в отличие от лимитного, забирает ликвидность из стакана и имеет  высокую стоимость, равную половине спреда (без учета комиссии). Смоделируем данную стратегию как импульсный процесс в непрерывном времени:


\theta^{tk}=\{\tau_n,\zeta_n\}


где τn- возрастающая последовательность моментов времени, когда используется маркет ордер,


ζn ∈ {−ζmax,ζmax}- случайная переменная, представляющая число контрактов, купленных или проданных в эти моменты времени.


Для чего нужны все вышеописанные модели? Наша цель — составить уравнение оптимального контроля, в котором будет учтен как inventory risk, так и adverse selection risk. А решением этого уравнения будет матрица состояний, которую можно представить в виде графика с двумя осями значений — первая ось inventory level, это текущая открытая позиция, вторая ось — depth imbalance, то есть диcбаланс объемов в стакане. Таким образом эти оси значений представляют собой аргументы по которым происходит управление — по первой оси — inventory risk, по второй оси — adverse selection risk. Матрица состояний представляет собой  множество значений $$\theta^{mk}_t ,\theta^{tk}$$. Их можно представить на графике в виде области внутри квадрата, ограниченного рассмотренными осями значений. Такой график представлен в заглавии поста, для значения спреда St=δ, на момент времени t=10 (за единицу времени может быть принят любой интервал, в зависимости от требуемой частоты сделок). На графике выделены следующие области:


1. Market making — в этой области выставляются ордера как на покупку так и на продажу по ценам best bid и best ask, то  есть \theta^{mk,b}_t=0 , \theta^{mk,a}_t=0;


2. Momentum (buy/sell). В этих областях необходимо срочное закрытие позиций, если они открыты в сторону, противоположную диcбалансу объемов и установление позиции согласно этому диcбалансу. Здесь используются маркет ордера, и θtk равен какому-то количеству контрактов, больше открытой позиции по модулю, противоположному по знаку.Точная величина зависит от значений на осях аргументов.


3. Inventory control (buy/sell). Эти области означают ликвидацию открытых позиций в ноль, также с использованием маркет ордеров, θtk равен открытой позиции с противоположным знаком.


4. Partial inventory control (buy/sell). Эти области аналогичны inventory control, но открытая позиция закрывается не полностью,θtk меньше открытой позиции по модулю, противоположна по знаку. Точная величина зависит от значений на осях аргументов.


В следующих статьях мы составим уравнение оптимального контроля и найдем его решение численными методами. Продолжение смотрите на моем сайте  или через некоторое время на H2T.






0 комментариев

Добавить комментарий